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CHAPTER 1

INTRODUCTION

4;j Future communications systems will require informa-
tion-carrying capacities of several hundred Mbits/sec over
long link lengths. Graded-index fibers have assumed consid-

- erable importance since they offer the possibility of multi-
mode propagation in a relatively large core fiber with low
mode dispersion.

The performance of optical fibers for communications

is chiefly determined by optical loss and by the temporal

‘ dispersion of light pulses caused by material and modal
dispersion. Material dispersion occurs because the index
of refraction varies as a function of wavelength. Modal
dispersion results from the differences in the path lengths
of the various transmission modes. Thus, material and modal

| dispersion determine the bandwidth and the information carry-

" ing capacity of the cable. For single mode step-index fibers,
the diameter of the fiber is small, which causes difficulty
in splicing and coupling to light sources. For a multi-
mode step-index fiber with a large diameter core, modal

dispersion severely limits the bandwidth and the fiber's

utilization over long distances [l].
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By varying the index of refraction across the radius
of the fiber core, it is possible to compensate for the path
length differences of the many modes carrying power in the
fiber. Graded-index fibers thus combine the advantages of
large core diameters with low modal dispersion.

In this report, we will examine the effects of pulse
dispersion and noise in a graded-index fiber optic communi-
cation system which utilizes pulse amplitude modulation.

It will be shown that pulse dispersion can result in inter-
symbol interference and degraded error performance of the
system. Expressions for rms output pulse width, intersymbol
interference, optimum receiver threshold levels, and error

probabilities will be developed in terms of system parameters.
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CHAPTER 2

PULSE DISPERSION IN GRADED-INDEX FIBERS

2.1 WKB Solution for Graded-Index Fibers

The propagation constants of a cylindrically symmetric
waveguide with a arbitrary index profile can be obtained
using the Wentzel-Kramers-Brillouin (WKB) approximation which
is widely used in guantum mechanics [2]. Of primary interest
will be the rms output pulse width which will be a function
of both the material and modal disperson in the optical
fiber. In the WKB analysis, the following assumptions are
made: '

1. The fiber core diameter is large so that numerous

modes will be excited.

2. The index variation is small over distances of a

wavelength.

3. All propagating modes carry equal amounts of

energy.

The refractive index profile of the fiber can be

modeled by
_ I\ « 172
n(r)-—no[].— ZAGQ ] r < a (2.1)
a(r) = n_ [1 - 2a]%/2 r>a (2.2)




where
r = distance from the axis of the fiber
a = radius of the core
A = (né - ni)/Zni
n, = refractive index at the fiber axis
ny = refractive index of the cladding

o defines the index gradient of the fiber.
It has been shown [3] for the above case that the total

number of guided modes is given by

[ 2 2 2 .2
M -C;Eﬂ a ng k™ A (2.3)

where k is the optical wavenumber. The group velocity for

a given mode, m, is given by

3 -1
_ i1 9°m
Vg = [-C— (.Q—T(—):] (2.4)
where Sm is the propagation constant of the m'th mode in the
direction parallel to the fiber axis. The time taken for

energy propagating in the m'th mode to travel a distance L
is therefore
. =£(ﬂ)
m c \ 3k . (2.5}
By using the WKB approximation it can be shown that [3]
Bm=nok[ 1- ZA(%

Therefore, the propagation delay can be written

)‘3/(0"*‘2) ] 1/2
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(a+2)
a=2- m
[1'(—;:'213(:71) ) +

20

3a=-2~2 A2 m (a+2) 3
Yora 2 (o) ) +oun]

“2n,A 5
Y= vz (a—x)
and the group index is defined as
N =n + A(zr\lo) (2.9)
A wavelength of light transmitted.
The mode number, m, used above is related to the double

guantum~-number LPZ'm' system of labeling by the simple approx-

imation

m 3 o(2m' + &' o+ 1)2 i (2.10)

For the purposes of specifying the fiber bandwidth
for a digital system, the rms pulse width is of primary

importance and is given by

where 91 is the term due to intermodal dispersion and is

given by




, 2, 2 1/2
1/2
L. e 3A/ ) / c2 . 4clc2A(a+l) N 4c (2a+2)
I 2c a+ } 3a+2 1 2a+l (5a+2) {3a+2)
(2.13)
- 4= 2 -y
<, T3 (2.14)
_3a -2 -2y
c, = 3 {ot3) (2.15)
The oy term is due to intramodal dispersion and equals
o] 2 2
_ r 2,d%n 2 d"n /
g, = — -\ o _ .2( o a=2~-y\ [ _2a
Mo L (dkz \; 2A 3w )(N‘“< a+2> ‘\21+z>
(2.16)
2 1/2
+ (N2 ( a+2 ) (30&2)}
where the rms spectral width of the source is defined by
P 5 1/2
=[J[ dx (A= i) S(A)w (2.17)
° J
and the mean source wavelength is given by
Ay =f diAS (1) . (2.18)
o

The rms pulse width has been separated into an inter-
modal and an intramodal component. The intermodal term
results from delay differences among the various modes pro-
pagating in the fiber. The intramodal component represents
an average of the pulse broadening within each mode and

arises from material and waveguide dispersion. With the




proper choice of % in a graded-index fiber, the intermodal
dispersion is small and the intramodal effects caused by
material dispersion predominate. The lower limit of the out-

put rms pulse width is

os 2 d no
o . o (X ) . {(2.19)
min -— «O

2.2 Selection of the Optimum Gradient Index

The total rms pulse spreading can be calculated [2]

using (2.12), (2.13), and (2.14). In Figure 1, this rms
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Figure 1. Calculated rms pulse spreading in a graded fiber
as a function of the parameter =.




pulse width is shown as a function of i for three types of
GaAs sources all operating at 900 nm but having different
spectral bandwidths. The fiber parameters are characteris-
tic of TiO2 doped silica guide with 4 = 0.0059. The three
curves correspond to an LED, an injection laser, and a dis-
tributed feedback laser having typical rms spectral widths
of 15 nm, 1.0 nm, and 0.2 nm respectively. For comparison,
the dashed curve represents the predicted rms width if
material dispersion and intramodal broadening are ignored.
In this case, (2.13) alone is used to compute pulse spread-
ing. The figure demonstrates that pulse dispersion, with
an LED source, has a lower limit of approximately 1.0 ns/km
and is set by the material dispersion of the fiber. Using a
laser source, the pulse dispersion approaches 0.02 ns/km.

In order to minimize the pulse dispersion, an optimum
index gradient must be selected which will decrease the
intermodal dispersion to a minimum. In (2.13), if we set
y=0, which corresponds to ignoring material dispersion, the
minimum dispersion occurs for a2 of nearly 2. For y#0.0, the

minimum occurs at approximately 2.23 and is given by

_ _ . [ (4+y) (3+y)
Ypin T 2T Y 7S { 5+2y . (2.20

Since the optimal a varies strongly with the wavelength of

the source, the output RMS pulse width is dependent upon

the source wavelength for a particular cable.




2.3 Accuracy of the WKB Analysis

Although the WKB analysis is relatively simple and
comprehensive, it is an approximation and results in errors
for modes close to cutoff [4]. 1In reality, these modes
always carry less power than the modes that are well guided.
This fact means that predicted values of rms pulse width
will not always correspond to experimental values. In the
WKB analysis, the maximum delay difference between propagat-
ing modes was approximately TA2/2, where T and A denote the
propagation time and the relative refractive index respec-
tively. By more exact analysis, we find that the delay time
differences between well-confined modes and modes close to
cutoff approach TA. Since we have assumed a small 4, in
this case 0.0059, inaccuracies of this magnitude can be
ignored for cable lengths under discussion.

In addition, the WKB analysis predicts an optimal
index gradient. 1In practice, it is difficult to produce
an optimal index gradient in a fiber many kilometers long.
For the LED source, pulse broadening of less than 1.5 nsec/
km can be achieved if 2 is within 25% of the optimal valra.
For the injection laser, an 5 within 5% of the optimal
value will give widths less than 0.2 nsec/km, and for the
distributed feedback laser, widths of 0.05 nsec/km are pre-

dicted if 1% control on o can be achieved.

y
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2.4 RMS Output Pulse Width as a Function of the Fiber
Parameters -

The temporal spreading experienced by a pulse of light
as it propagates along a graded index optical fiber is

characterized in terms of the dispersion parameters 9y and

Ty given in (2.13) and (2.16). We can express the output

pulse width, T in terms of the individual fiber para-

out’
meters as
1/2
= 2 2 2
(Tout)rms = {(ZOI) + (ZUM) + Ti } (2.21)

where z is the fiber length and Ti is the rms input pulse
width. With the optimal choice of o for the graded index
fiber, the intermodal dispersion is small and the dispersion

term, predominates. Therefore the output pulse width

OM,

can be expressed as

1/2
- 2 2 7
(Tout)rms = L (sz) + Ti j . (2.22)
The expression for OM, (2.16), can be evaluated using data

listed in [2].

In Figures 2 and 3, the rms outpuct pulse width is plot-
ted as a function of the fiber length, 2z, for various values
of rms input pulse width. A GaAs LED source with a line
width of 15 nm and wavelength of 900 nm is assumed. When Ti
is significantly larger than 20 nsec, the Tz term is dominant

in (2.22) and To increases very slowly with increasing z.

ut
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In Figures 4 and 5, T is again plotted as a func-

out
tion of z and Ti' A GaAs laser source with a wavelength

of 900 nm and a line width of 1.0 nm is assumed. The temporal
spreading experienced as a function of increasing z is

similar to :%e results obtained with the GaAs LED source.

The magnitudes of Tou and Ti differ in these two cases

t
because of the larger source line width of the LED source.
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CHAPTER 3

ANALYSIS OF AN OPTICAL DIGITAL RECEIVER

3.1 Mathematical Model of the Receiver

In fiber optical systems, the detector output pro-
duced by the optical power impinging upon an avalanche
photodiode is an inhom~rgeneous, non-stationary shot noise
process [5]. It is assumed that the optical power, p(t),
impinging upon <l..e av..lanche photodiode's p-n junction is
a truncated stresi of independent binary digits. A mathe-
matical model of an optical digital receiver is depicted in
Figure 6. .t consists of a p-n junction followed by a ran-
dom multiplier with a known electron output probability
density function followed by a filter. Arrival or absence
of a transmitted pulse is decided by a comparator. An in-
correct decision may be caused by thermal noise, intersymbol

interference, shot noise, or dark current.

A e veaes o w

The current x(t) is comprised of xs(t), the signal
current from the random multiplier output, and the Gaussian

noise current xth(t). x(t) 1is given by

x{t) = xs(t) + xth(t) . (3.1)

xs(t) is an inhomogenous, non-stationary shot noise process

given by
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v(t)
xs(t) = Z 9, S(t—tv) (3.2) !
v=l

where tV is the time release of the vth electron from the

ey

p-n junction. V{(t) is a random number of these electrons
i, which occur in a time interval up to t and g, are statis-
tically independent multiplicative random variables correspond-
ing to the random multiplication and random gains encountered
in the multiplier.

The p-n junction produces primary electrons in response

to the impinging optical power, p(t), and due to thermal

" effects. The rate at which primary electrons are produced

L obeys Poisson Statistics with an average rate of

Alt) = Xs(t) + Rd (3.3)
where
Ag(t) = 2= p(t) (3.4)
! and
¥ 7 = junction quantum efficiency |
h = Planck's constant
E f = optical frequency
t )d = dark current "counts" per second.

»{t) 1s only the average rate at which electrons are pro-

duced. The probability that exactly k electrons are produced

in any interval T seconds long is given by
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Ny

. m _ K e
P[}\' (torto+is)] —"—k!" (3.5)
where
t +7T
o s
u = J’ A(t)de . (3.6)
to

Given p(t), the number of electrons produced in any
interval is statistically independent of the number produced
in any other adjacent interval [6]. p(t) is assumed to be of

the form of a digital pulse stream given by

oo

_ . 2
p(t) = EZ di < !So(t lTs)l > (3.7)
j==c
where
di = gsequence of independent equiprobable data symbols
Ts = gignaling interval

<|s (t-iT ) |®> = fiber distorted pulse shape which
is positive for all t.

We shall assume

0

/‘ <tso(t—iTs)f2> =1. (3.8)
Thus, di is the energy in the ith pulse. We will assume
that the fiber distorts the pulse enough so as to cause
intersymbol interference (ISI). 1In the presence of ISI,

N

As(t) can be broken into two parts:
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_ I | 2 Z - - 12
ME) = g ldg <iS_(t) %> + Lo d; <is_(t=iT ) | ™>]
170 (3.9)
+ ]'\d.

The zeroth term in the summation represents the photon

arrival rate for the pulse under detection. The signaling
slots containing the ISI components are comprised of the

remaining terms.

3.2 Statistics of the Receiver Qutput

In Figure 6, the current x(t), is linearly filtered. é
h(t) is the impulse response of the filter, and y(t) is the
filter output. The signal component of this output (due to

the nonuniform shot noise) is given by

vo(£) = x (£) * h(t) = T g h(t-t ) . (3.10)

n=-x

The mean and variance of the signal at the receiver output

can be calculated using Campbell's theocrem [7]:

Ely,t0)) = 2( * h(m) =fdT == p(7) h(t-") (3.11) :
x N
= [ ar b Bt~ h(t,mt i

-0

where Cy is the covariance of the received signal. The
s

impulse response of the filter is described by ]

-~ 4
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)
L

— . - _§
h [~ i 2
h(t) = (3.13)}

0 elsewhere

and

h(t - 1) = h rect <tT_T) (3.14)
. ‘s

where h is a constant. The region over which h(t-7) is non-

zero satisfies the inequality

Ts
]lt" T :-2— (3.15)
which redefines the limits of integration to
T T.
t-2—3~<T<t+§—°—. (3.16)

By using the above results, the mean and variance of y (t)

can be written as

Ts
t + 3
_ nh
E[ys(t)] = f dTEp(T) (3.17)
Ts
t - 3=
T
5
£ty .
nh T
Var[ys(t)] = f dT r P(») = h E[ys(t)] (3-18)
T
s
t ~ 2__
where p(7) is given by (3.7). 1If the sequence of data symbols

is known, the mean and variance of the signal component of the

cutput become




[ ~h - 2
E[ys(t)‘di] = / drt E zz:di <;SO(T-1TS); > (3.19)
< i=ow
t - TS/Z
varly (t)[d;] = h Ely () 14,1 . (3.20)

The thermal noise component of the output is yth(t) where
yth(t) = J( dt Xth(T) h(t - ) . (3.21;

The thermal noise is uncorrelated with zero mean. The vari-

ance of the filtered thermal noise at the receiver output is

0

N
2 _ Yo .2
Uth —'J[ dt 7 (t) (3.22)
which reduces to
Ts =2
N N T h
;. % = O 2. o8
Sen = jﬁ dt 5 h”® = > (3.23)
o

where No/2 is the two sided power spectral density of the

thermal noise.

3.3 Temporal Pu.se Slot Representation

Our receiver performance analysis assumes that only the
pulse slots immediately adjacent to the pulse slot under
detection will contain significant ISI contributions.

Figure 7 illustrates the temporal pulse slot representation

used where TsO contains the energy of the pulse ur r
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Time

Figure 7. Temporal pulse slot representation.

detection. The energy in Ts+l is integrated, sampled and
dumped exactly one period before the energy in Tso is
analyzed. Exactly one period after the energy in TsO is
integrated, sampled and dumped, the energy in Ts_l is
analyzed. 1In Figure 7, IO equals the energy in Ts due to
the pulse under detection. I_; and I , are the energies in
TsO due to the temporal spreading of pulses in Ts_l and Ts+l

respectively. The Ii energies are described in integral

form by
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1 2
j I, = ,/‘ dt d <iS_(1)|">| (3.24)

3]

[\S]

+
I, = dr d . <!§ (1 + T )% (3.25)
-1 Y-l Yo s’ | :

T =-Ts

NIH
(1)

2
= T - | >
I, J[ dt d,; <[s_(t - T,)! (3.26)

t
[}
NL) 3

3.4 Expression for the Probability of Error

Amplitude shift keying is chosen to modulate the light
intensity in the fiber. The linear receiver filter and samp-
ling circuitry comprise an integrate-and-dump detection
scheme [8]. The signal y(t), in Figure 6, is sampled every
Tg seconds, where T is the temporal pulse slot width, which
is inversely proportional to the bit rate. The sampled sig-
nal, y(Ts), is the sum of a signal component s, and a noise
component n. s is due to the signal induced shot noise in
time slot TsO when a 1 is transmitted. n is comprised of
thermal noise, and the shot noise components spilling over
The dark current

from adjacent time slots Ts_., and Ts+

1 1

primary electron count is assumed to be small, and is
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therefore neglected in this analysis. y(Ts) is then compared

to a decision threshold, r If y(Ts) is greater than r

T* T'
the receiver decides a 1 was transmitted. 1If y(Ts) is less

than r the receiver decides a 0 was transmitted.

TI
We will temporarily neglect ISI effects and examine the
two ways in which errors occur. If a 1 is transmitted, an
error occurs if
+ .
S n <y (3.27)
where n is comprised of shot noise and thermal nocise. An

error will also occur if

n > ry (3.28)

when a 0 is transmitted. In this case, n is composed only
of the thermal noise present in Tso. Since 0's and 1's are

equally likely, the average probability of error can be given

by

P(e) P(e|l)+P(l) + P(e0):P(0)
(3.29)

P{(n > rT).

N}

Qur error ana.ysis concentrates on the energies in time
slots Tso, Ts_l, and Ts+l, which give rise to eight possible
probability of error combinations based upon 0's and 1l's
appearing independently in the three time slots under dis-
cussicn. The total average probability of error can be

expressed as
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P(e) = Pleld_; =1,d,;, =1 -P(d,=1,4, =1

+Plejd_  =0,4d,,=1) -P(d, =0,d,, =1
(3.30)

+Pleld ; =1,4,,=1) - P(d_; =1,4d, =0

+ P(e[d_l =0,d,=0) +P(d_; =0, d, =0

Since di is a sequence of independent equiprobable data
symbols and if we assume symmetric pulse shapes, then it

can be shown that [9]

I,.=1,=1 (3.31)
and
..l:' = g - i - = -
P(e) = z{Py(efd =0,d_,=1,d ;=1) + Py(e[d_=1,d_,=1,d,,=1]
1 = = = = - -
+ Tg(Po(eld =0,d_,=0,d, ,=1) + P (eld =1,d_,=0,d ,=1)]

1 = - = - =0.4 .=
+ FIPgleld =0,d_;=0,d ,=0) + Py(eld =1,d_,=0,d ,=0)]

1l +1 1

(3.32)

3.5 Gaussian Approximation for Shot Noise Distribution

If we approximate the shot noise distribution as Gaus-
sian, the mean and variance of the process completely des-
cribe it. Further, the difficulty in evaluating an
inhomogeneous nonstationary shot noise process is avoided.
If we assume the avalanche gain of the APD is large, the
Gaussian distribution is a good approximation to the exact

distribution [10]. It can be shown [9] that the expression

for the average probability of error, P(e), in (3.32) can be
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expressed as

oL = (14+24I) A ~ 2AT ]
P(e) = % + %g erf T SNR| - erf T SNR)i
b1 + 2oL, 51 + 281-1, !
N+1 N1 "
o, = (l+AI) A - AT
+ % erf T SNR| -erf] T~  suml (3.33)
5T _ AI-1
/2(1 + =7 /2(1 + =57 |
an, = 1 ) 1
+ %gerf L SNR| - erf T SNR
/2 2N 1
"N+1 !

v

J

where dimensionless quantities have been introduced. A

measure of the ISI is given by the spreading ratio

I
a1 = £ (3.34)
o
We define the signal energy by
=~ h1I (3.35)
S nf o :

The decision threshold, normalized by the signal energy, is

given by
Fp
A% = (3.36)
The ratio of thermal noise to shot noise is given by
cth2 thermal noise variance
N = = - - (3.37)

fis shot noise variance
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We define the signal-to-noise ratio (SNR) as

S Sl/z
SNR = 2 = . 1/2 - Zi/2 173
3 (oth + hs) h (1 + N)
3 12 (3.38)
EXA
Rt

(1 + N)l/z
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CHAPTER 4

RECEIVER OPTIMIZATION

4.1 Evaluation of the Optimum Decision Threshold

If the receiver is operating under the ideal conditions
of zero thermal noise, zero ISI, and zero dark current, the
resulting decision threshold would be egqual to zero. A
given time slot will contain energy only if a one is trans-
mitted in that period. There will be no energy present in
the time slot if a 0 is transmitted. Unfortunately, both
thermal noise and 1ISI are present, forcing the decision
threshold to be greater than zerc. By optimizing this deci-
sion threshold, we can improve on error performance of the
receiver.

A measure of the ISI is the spreading ratio, I, dis-
cussed in the previous chapter. If we assume Gaussian pulse
shapes, expressions can be easily derived for the pulse ener-
gies Io and Il in terms of the error function and complemen-
tary error function [9]. The analytical expressions for the

pulse energies are

I = erf| —S (4.1)

I =%—erfc —s (4.2)




= g

-

o T TR TN T e

T T
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We can express the spreading ratio in terms of Ts and Tout

by

T
% erfc =

2/2 7T .

AL = = ou . (4.3)

erf S
2/3 7T

\ out

In Figure 8, the spreading ratio is plotted as a function of
the ratio of signaling interval, Ts, to the rms output pulse

width, T , for a Gaussian pulse shape.

out

To determine the optimum threshold, we will examine the
two conditions under which a detection error is most likely
to occur. The receiver is most likely to erroneously detect
al in Tso when both adjacent time slots contain l's. Energy
will spread into Ts0 from adjacent time slots due to ISI.
Thermal noise will also increase the energy in Tso. If the
ISI and thermal noise contributions are great enough, the
decision threshold will be exceeded and the receiver will
erroneously detect the presence of a 1 in Tso.

The receiver is most likely to decide a 0 was trans-
mitted in Tso when a 1 was actually transmitted when the
adjacent time slots both contain 0's. If the ISI is severe
enough, excessive energy will spread into Ts_l and Ts+l,

leaving an insufficient amount of energy in Tso to exceed

the threshold.
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An approximation for the probability of error can be

found if these two worst case conditions are summed together

in the expression

1)

i
O
Q

]
H
0,

]

P(e) = PA(eldo =
(4.4)

0).

]
'_l
o}

1]
o
o

]

+ PH(e|do

To determine the optimum threshold which minimizes P(e), we
will differentiate (4.4) with respect to the normalized

threshold, set the result equal to zero, and solve for

QT,
the optimum threshold, A5pr* The expression for the optimum

threshold is

L _N(2-4A) - (ab +c+rd+et/? (4.5)
OPT 5T - 2 :

where

a = ATI(16AI + 8N -~ 8) - 4N

20T - 1 2

b = 1n(l + N+ 3 ) / SNR

c = N2(16AI% - 16AI + 4)

d = N(32 AI° - 164I° - 8AI + 4)

2

e = 32013 ~ 32412 + 84T

We see that in the absence of ISI and thermal noise, the

optimum threshold reduces to zero as expected.
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4.2 Numerical Results

In Figures 9-12, the optimum threshold, is plotted

*opT’
as a function of the spreading ratio, 4I, for several values
of the thermal noise to shot noise ratio, N. Values of N
used are 0.0001, 1.0, 2.0, and 3.0 in each figure. The SNR
is held constant for each set of curves. The advantage of
increasing the signal strength is evident if we compare
Figure 12 with Figure 9 and note the significantly lower
values of optimum threshold when a strong signal is present.
In Figures 13-16, the optimum threshold is plotted as
a function of the spreading ratio for several values of SNR.
The value of the thermal noise to shot noise ratio, N, is
held constant for each set of curves. For values of N
greater than 0.5, the value of the optimum threshold in-
creases linearly with increasing values of iI. For small

values of N the relationship between o and AI is very

OPT
nonlinear. Under these conditions, very small optimum

threshold values can be realized for low ISI levels.

|
|
|
]
|
|
!
{




= *3uP3SUOD
t < PI2Y ST ¥YNS -UOTINTAISTP SSTOU JOYS UPISSNPH © 103
, oTjex purpeaads IS] 9yl Jo uorilouny e se proysaiyy wnurzdo °¢ ainhtg “

(IV) Ollvd 9NIQY3IMdS

se* se- S1° 80"

*- mo Nu ﬂc -Q

+ 3 — - % " " .s

1 - 1 ﬁl
i 01 = ¥NS T2 o
_, 3
| i o E
2
[ 4+ $+
I
I000°0 =N o
| . n—.\wu_
o 4+ g <
o)
~
- ; . o

! i - F 9
] . -\ —
- - OD
- . om - ” \\ Aﬁ bo ]
ON . * — Ll\




*3UP3ISUOD
n PI®Y ST ¥YNS "UOTINAIIISTP SSTOU JOYUS URISSNEH B 103
oTyex huipeaxds TSI BYl JO UoTjzouny e se proyssayz wnwridg °Q1 2anbTtg

(IV) Ollvd 9NIQVIHLS

=10 = = O s
v. m. N. “l .s
+ +— 4 + 4 + 4 -s
- + 1°
- } = 5
0'¢ = UNS M
4 -3 M
<
boo o
pt)
m
+ 5° AH\HV
O
~
o
4+ 9° _
Q
O
4 A M
+ 8’
1
1o
°1




+3Ue3SUOD
PT9Y ST ¥NS °UOTINQTIISIP SSTOU JOYS UeTSSNED P 103
or3ex burpesads IST 9yl JO uOTIdUNny e Se ploysaiyl wnwtido {1 @anbtda

(IV) OlLYY ONIQY3HdS
3e” sz- st s@*
¢ . m . N . " Y . 8

s
- -+ $ + — . & . s

0'G = YUNS |

10000 =N

L

dd0p) gIOHSIEHL WNWILLO




t~
[3g]

‘3Uue3lsuod
PT2Y ST YHS "UOTINQTIIISTIP O9STOU JOYS URTISSNE) b I10j]
otjex burpeaads ISI 8yl Jo uorinung e se proysaayl wnwrtido

(IV) Ollvd SNIQV3IHdS

gS¢- se° st* SQ°
e’ c’ T

+ 4 3 s

*Z1 @anbrg

T

190D) IOHSINHL WANWILLO




38

+3ue3suod PIaY ST N “UOTINUTIISTP 9STOU JOYS UPISSNEH B 103

ot3jex burtpeaads

ISI 2yl 30 uorlouny v se proysaaylz wnwiido ‘€1 aanbryg

(IV) Ollvd ONIQV3YdS

[se* se’ st° =17
e (A | ‘@
4+~ -+ — + -+— " - ‘D
- S ﬂ-
- N.
o
0
.
T+ € z
C
ﬁ <
T+ &° -
I
M
19 8
I
O
—
+ 9° O
Q
t4°9
l(
- 0.
t 6"




39

*3UP3ISUOD pPIdY ST

M  “uOT3INQTIISIP SSTOU JOYS ueISSNEeH B I10J

oT13ex mc.ﬂﬁwwhﬁuw ISI 3ay3 3Jo uoT3iodouny e se pIoysaxyl EﬂEﬂUQo Al mHﬂmﬂh
(IV) Ollvd OSNIGV3HdS
Se-’ sz’ st sa-’
e’ e’ L ‘2

+ -+ e - + — - -Q

L # e

5 Te
o
2
- $ e =
Ol =N ﬁ <
. C
- - *- W
—
I
1o 2
[92]
I
o
$ 9 m
+ ZL° Om
=5

| P

- fc




) _”-""h,"’“'!

= *juelsuod pIady sT N ‘uoTINATIISTP 2@8STOU JOys uerssney e 103
N ot3ex mvc..nﬁmw.ﬁnmm ISTI ¥yl JOo uor3jioduny e se pIoyusaayl ESE._H«QO ‘ST mhﬂmﬂ.m
(IV) Ollvd 9NIQV3NdS
se* ges sSt° S@°
v 1 e’ | 9 ‘2
F -+ + + —— +— -+ + ‘D
| b~ .T ﬂ .
: | R
| ﬁ

A9Opy g10HSIEHL WAWILAO




*3Ue31SUOD PTAY ST N *UOTINQTIISIP SSTOU JOYS ueTrssnen e I0J
orjex burpeaids ISI 3Yl JO uoTiduniy e se proysaryl unwiido -9 2aInbHTJ

41

(IV) OlLlvd OSNIQVY3HdS

s¢° Se° st sp*
b m. 2 1 ",
+ +  — b 3 ' 5 .&
_“ B + 1
- 4 No
5 1€
“ ! 0'€ =N L.

w
(+900) goHSINHL WNWILLO




42

CHAPTER 5

RECEIVER PERFORMANCE AND SYSTEM DESIGN CONSIDERATIONS

5.1 Receiver Error Rate Performance

Since we have expressions for the probability ¢ error
(3.33), and the optimum decision threshold, (4.5), we an
replace o

in (3.33) by « to obtain an expression for

T OPT
P(e) which is minimized for the variables, AI, SNR, and N.
If the communications system is designed such that the spread-
ing ratio, AI, is zero, P(e) becomes a function of N and SNR
only and is shown in Figure 17. The error probability is a
monotonically decreasing function of the signal-to-noise
ratio. For a constant signal-~-to~noise ratio, the error
probability increases with increasing values of N which cor-
responds to an increase in the thermal noise. Also, to main-
tain a specified error rate of 10—8, the SNR must increase
by approximately 2.5 dB if the noise ratio increases from
1074 to 10.0.

Ian Figures 18-21, P(e) is plotted versus AI, SNR, ana
N when the intersymbol interference is not zero. Again, the
error probability decreases monotonically as a function of
the signal-to-noise ratio. N is held constant for each plot
4

and takes on values of 10 , 0.1, 0.5, and10.0 for succes=-

sive figures. 1In each plot, P(e) is shown for I = 0.01,

0.1, 0.2, and 0.3. A review of Figures 18-21 indicates that
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the spreading ratio has a much greater effect upon the error

probability at low noise levels. Thus, when designing an

optical fiber communications system with a specified error

rate, controlling the ISI becomes more important at low

noise levels.

5.2

the

one

System Design Considerations

When designing an optical fiber communications system,
error probability is of primary importance andis normally

of the initial specifications. A typical value of N can

be obtained for available receivers. Xnowing the error

probability and N, and by referring to Figures 18-21, a maxi-

mum value for AI can be obtained once we specify an appro-

priate SNR based upon the system parameters. In Figure 8,

we can obtain a value for Ts/Tou

& for this value of AI.

Specifying the bit rate now allows us to calculate the value

for
the
the
the

for

T . Knowing the maximum allowable value of T

out and

out’
desired optical fiber cable length further specifies
value for the rms input pulse width. We can now select
proper fiber and source in order to meet the requirements

the optical fiber system.




CHAPTER 6

CONCLUSION

B In this report we have analyzed the effects of pulse
dispersion and intersymbol interference on the performance

of a graded-index fiber optic communication system. By

using the WKB approximation, it was found that with the proper
choice 0of the index gradient, o, modal dispersion can be re-
duced such that material dispersion is the dominant factor

in calculating pulse dispersion in a graded-index fiber.

An expression for the rms output pulse width, Tout'
was developed in terms of the dispersion parameters, the
length of the fiber, and the rms input pulse width, Ti‘ It
was shown that a narrow linewidth source, such as a laser,
is capable of achieving a smaller Tout than an LED with an
egquivalent value for Ti. We also find that for small values

I of Ti, the pulse underwent severe temporal spreading, which
resulted in Tout being many times greater than Ti'

A mathematical model of an optical digital receiver
was developed using an APD as the optical detector and an
integrate-and-dump pulse detection scheme. Dark current was
considered negligible and a Gaussian approximation was made

for the shot noise. An expression for the optimum decision

threshold of the receiver was developed in terms of the SNR,
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the thermal noise to shot noise ratio, and the spreading

ratio, AI. We have shown that a linear relationship exists

between %5pr and AI when N is greater than 1.0. In general :
3 |

we have shown that a increases with increasing values of

OPT

N and AI. Also, Unprp decreases with increasing values of

SNR.

An expression for the average probability of error

S L

was developed for the system as a function of the optimum
decision threshold, the spreading ratio, the thermal noise

to shot noise ratio, and the SNR. In general the error rate i

increases for increasing values of N and ISI, while decreas-

ing for increasing values of the SNR. Also, ISI has a more

pronounced effect on the error rate at low noise levels

when compared to the situation at high noise levels.

In the final section, we developed a method of design-

ing a fiber optic communication system based upon the pre-~

ceding analysis. Using this method, an appropriate selec-

tion of the optical source and fiber optic cable can be made

based upon the system specifications.
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